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The hydrostatic pressure derivatives of the 
elastic constants of bismuth alloys 

TU. H A I L I N G ,  G. A. S A U N D E R S  
School of Physics, University of Bath, Claverton Down, Bath, UK 

Measurements of the effect of hydrostatic pressure on the velocity of ultrasonic waves 
have been used to obtain the pressure derivatives (~CIj/~P) of the elastic constants of 
single crystals of a b ismuth-10  at % ant imony alloy and of heavily tellurium-doped 
(n-type) bismuth. A theoretical model is used to predict that there should be no elec- 
tronic (L to L point) contr ibut ions to these pressure derivatives. This is established 
experimentally by the finding that the ~CIj/~P values of the n-type bismuth doped with 
tel lurium (carrier density n = 1.2 x 10 2o cm -3) are the same within experimental error as 
those of pure bismuth. The zone centre acoustic mode GrtJneisen parameters, obtained 
from the elastic constants and their pressure derivatives, are used to quanti fy the anhar- 
monicity of the acoustic mode lattice vibrations for these bismuth alloys. It is concluded 
that the vibrational anharmonicity of bismuth is insensitive to alloying wi th up to 10 at % 
antimony. 

1. Introduction 
Over a wide range of concentration ( ~ 7  to 

40at% antimony), the bismuth-antimony 
alloys are narrow gap semiconductors, and their 
device potential has led to extensive studies of  
their electronic properties. The elastic stiffness 
constants of  selected alloy compositions have 
also been measured [1]. However, no information 
is available on the effects of hydrostatic pressure 
on the lattice dynamical behaviour of these 
alloys. In this paper ultrasonic measurements of 
the elastic constants under pressure of a semi- 
conducting bismuth-antimony alloy are reported. 
The elastic constants themselves are a measure 
of the slopes of the acoustic branch of phonon 
dispersion curves at the Brillouin zone centre, 
while the pressure derivatives of the elastic con- 
stants determine the change of these slopes with 
pressure. Thus the pressure derivatives of the 
elastic constants provide information about the 
vibrational anharmonicity, that is the nonlinearity 
of interatomic forces with respect to atomic 
displacements. At high temperatures all physical 
properties which depend upon thermal motion 
are influenced by anharmonicity so that its 
knowledge is fundamental to an understanding of 
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material properties such as thermal expansion, 
crystal stability and mechanical strength. The 
usual practice is to discuss anharm0nicity in terms 
of a Grtineisen parameter and the gammas appro- 
priate to the zone centre acoustic modes are 
presented here. The temperature dependences of 
the elastic constants of bismuth and its alloys with 
up to 10 at % antimony have been found previously 
to be very similar, suggesting that the lattice 
anharmonicity of bismuth is not sensitive to 
alloying with its neighbouring group V element 
antimony. The pressure dependences of the elastic 
constants enable this suggestion to be examined 
quantitatively. 

There can be measurable electronic contri- 
butions to the elastic constants of a many valleyed 
semi-metal, like bismuth, or semiconductor, such 
as the bismuth-antimony alloys. A theoretical 
study has been undertaken to assess whether 
any electroriic contributions to the hydrostatic 
pressure derivatives of the elastic constants are to 
be expected. Testing of the predictions o f  this 
theory is simpler using heavily n-type doped 
bismuth than with the bismuth-antimi~ny alloys 
themselves. Hence the hydrostatic pressure deriva- 
tives of the elastic constants of a tellurium-doped 
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bismuth crystal have been measured and these 
are also reported here. 

2. Experimental procedure and results 
The single crystals of b ismuth-10at  % antimony 
and tellurium-doped bismuth were grown by the 
repeated pass, zone melting technique. The elastic 
constants of the bismuth-antimony alloy crystals 
formed part of a wider study of ultrasonic wave 
velocities in a number of alloys in the series by 
Lichnowski and Saunders [1], whose paper gives 
further details of crystal growth and ultrasonic 
sample preparation. The single crystals of the 
tellurium-doped bismuth were those (denoted 
T20) used by Lichnowski and Saunders [2] to 
determine the electronic contributions to the 
elastic constants of bismuth. Tellurium acts as 
an electron donor in bismuth; the carrier concen- 
tration determined by galvanomagnetic measure- 
ments at room temperature in this n-type material 
is 1.2 x 10Z~ Radioactive tracer experiments 
have shown that tellurium is a monovalent donor 
in bismuth [3]. Hence it can be assumed that each 
tellurium atom contributes one electron to the 
L-point ellipsoids. To give an electron concen- 
tration of 1 .2xl02~ -3 requires a tellurium 
concentration in the alloy 0.43 at %. 

The crystals were orientated by the Laue back 
reflection technique, and faces, perpendicular to 
the crystallographic direction in which the ultra- 
sonic waves were to be propagated, were cut and 
polished parallel to better than 10-4tad. Ultra- 
sonic wave transit times were measured by the 
single ended pulse echo technique to 1 part in 105. 
The second order elastic constants of the 10 at % 
antimony alloy have been reported between 4.2 
and 300 K by Lichnowski and Saunders [ 1 ] and of 
the tellurium-doped bismuth crystal (T20) also by 
Lichnowski and Saunders [2]. 

Hydrostatic pressure measurements were made 
in a piston-and-cylinder apparatus, the pressure 
being determined by means of a pre-calibrated 
manganin resistance coil. Further details of the 
apparatus and techniques employed can be found 
elsewhere [4]. 

To avoid the need to calculate changes in 
crystal dimensions under pressure, the "natural" 
velocity W technique [5] has been used. Hence 
experimental measurements of the change in pulse 
echo overlap frequency induce by application 
of hydrostatic pressure have been converted to 
relative change, AW/Wo, of natural velocity. 

Results for a number of ultrasonic modes in the 
b ismuth-10at% antimony alloy are shown in 
Fig. 1, and those for the tellurium-doped bismuth 
in Fig. 2. The effect of pressure on the ultrasonic 
wave velocity can be seen to be linear over the 
pressure range examined. 

2 t The initial pressure derivative (pV)~'=0 IS given 
by [6] 

(pV2)~:o = pV2o(2f'/fo + 3 T -  2NaNmSTmu)e=o 

(1) 
where Vo is the mode velocity at atmospheric 
pressure, f is the pulse echo overlap frequency at 
atmospheric pressure and f '  is its pressure deriva- 
tive. For 3m Laue group rhombohedral crystals, 
these equations reduce to the following expressions 
for the effective pressure derivatives OCzs/OP: 

where 

~)C,, _ ~ ) p  C,I(~_.~ + 2S,3 + $3 0 

~C66  ~ { 2 f '  
8P - U661-f-- -t- 2S13 q- S 3 

 c33 _ c [2I' 1 OP 33~ f + 2Sll + 2S12-  $33 
/ 

~C44 ~ [2f '  
bP - C~[---f- + 2Sll + 2S12-- $33 ) 

- + S11 + $12 + $13 OP / 

~P - C" + 2S13+ Sa3 (2) 

C t 1 1 = ~ {~(C11 + C33) + C,~-  C14 

Cl1 - ~ C33 - C14) 

"Jr" (C13 -~- C44 - -  C14)2] I/2 } 

C" = �89 {(C66 + C44) + [(C44 -- C66) 2 + 4C~4] 1/2} 
(3) 

Here the isothermal compressibility 3 T (= 3 s +  
TI32/pCp) has been replaced by the adiabatic 
compressibility 3 s due to the lack of extensive 
thermodynamic data for the alloys; however the 
error introduced can only be of the order of 1%. 
The pressure derivatives OCzj/SP for the bismuth-  
10at% antimony alloy and the tellurium-doped 
bismuth crystal are compared with those of pure 
bismuth in Table I. A second way of expressing 
the data is in the form of thermodynamic coef- 
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Figure 1 Relative change in natural wave velocity in bismuth-10 at% antimony alloy crystals under hydrostatic 
pressure. The modes are: A: N[001], U[100]; B: N [ 0 - - ~ I ,  U [ 0 - - ~ I ; C :  N[001], U[001]: D: N[100], 
U[010];E: N[001], U[010]; F: NIl 00], U[100]. 

ficients, which are defined in terms of  the second 
derivatives with respect to strain of  the initial 
energy [6]. For a 3m Laue group rhombohedral  
crystal,  it can be shown that the hydrostat ic 
pressure derivatives of  the thermodynamic second 
order stiffness are related to the OGa/OP by 

B u  = 3 C l l / 3 P - ~  1 -- ( $3 - -  2S1)Cll  

B66 = ~C66/~P q- 1 --  ( $3 - -  2S1)C66 

B33 = ~C33/~P + 1 --  (2S1 --  3S3)C33 

B44 = OC~/OP + 1 + $ 3 C ~  

B13 = ~C13/~P--  1 + $3C13 

B14 = OC14/OP H- S1C14 (4) 

where $1 = $2 = Sl1 + Sx2 + S13 and $3 = 2S~3 + 
$33. These pressure derivatives Bia , also given 
in Table I, are useful in calculating the mode 
Griineisen parameters. 
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Figure 2 Relative change in natural wave velocity in tellurium-doped bismuth crystals (T20) under hydrostatic pressure. 
The modes are: A: N [ 0 ~ ] ,  U [ 0 ~ ] ;  B: N[001], U[001]; C: N[001], U[100]; D: NIl00] ,  U[100]; 
E : N [ 1 0 0 ] , U [ 0 1 0 ] ; F : N [ 0 ~  ,,7},U[0--~,~,,7].' t 

3. Discussion 
The free energy in semi-metals and semiconductors 
includes a free carrier contribution. In a many 
valleyed material, application of  a strain can 
induce a shift of  the band extrema relative to each 
other, the free carriers redistribute to minimize the 
free energy, and the effective elastic stiffness is 
reduced [7, 8]. The electron Fermi surface of  
bismuth consists of  three geometrically equivalent 
prolate ellipsoids each centred about energy 
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minima at the L points on the six irregular 
hexagon faces of  the Brillouin zone (for a detailed 
description see the review [9]). At the L point 
there is a valence band separated from the con- 
duction band by a small energy gap Eg (13.6 eV') 
[10]; interaction between this and the conduction 
band results in a non-parabolic dependence of  
momentum upon energy. Lichnowski and 
Saunders [2] have extended the Keyes' model to 
show that the electronic (L to L point) contri- 



TAB L E I The effective pressure derivatives ~CI, I/OP and the pressure derivatives Bid. of the thermodynamic second 
order elastic constants at 290 K for bismuth-10 at %antimony and bismuth-0.43 at% tellurium compared with the 
data for pure bismuth. The units of the second order elastic constants CIj are 109 N m-2 

Bi-10 at % Sb Bi-0.43 at % Te Bi [ 1, 13 ] Errors 

oCn/~P 6.9 6.7 6.38 
oC~a/oP 3.7 3.6 2.38 
oC~a/ilP 4.4 4.8 4.69 
aCt4/i}P 2.0 2.0 1.70 
~Caa/~P 7.4 7.4 6.62 
~C44/~P 3.6 3.4 3.37 
aC6~/aP 1.6 1.6 2.00 
Bn 8.1 7.5 6.98 
B~2 2.7 2.5 1.44 
B13 3.0 3.3 4.14 
Bt4 2.0 2.1 1.84 
Baa 9.8 10.0 9.20 
B44 4.8 4.6 4.58 
B6~ 2.5 2.5 2.80 
C~l 66.8 61.4 63.4 
C1~ 24.4 25.5 24.5 
C1~ 24.7 24.3 24.9 
C~ 8.3 7.42 7.28 
C~ 37.9 37.7 37.9 
6"44 13.1 11.6 11.5 
C~ 21.2 18.0 19.4 

-+ 3% 
+- 20% 
-+ t0% 
+- 10% 
+ 5% 
+- 1% 
+ 12% 

where 

and 

butions to the second order elastic constants of  
bismuth in the non-ellipsoidal, non-parabolic band 
(NENP) model  are given by 

,~Cll  : - -  ( 9 / 2 ) ( L l l - -  L22)2T 

AC12 = + (9/2)( / ,11--  L2~)23 ' 

ACI4 = --  9 (Ln  --  L22)L23T 

/"C44 = - 18L2a3, 

AC~3 = ACa3 = 0 

AC66 = ACI1 = - -  AC12 ( 5 )  

-1/2 7r 
12 Ne(kT)-I [F-1/2(rt) + (6kT/Eg)Fv2(rl)] 

(6) 

Nc = 2(2rrm*kT/h2) 3/2 (7) 

The Lij are components  of  the deformation 
potential  tensor, F_I/2 (~), and F1/2(~)are F e r m i -  
Dirac integrals in the reduced Fermi energy 
r l ( = E b o / k T )  and me*( = * * *, , /3 rn~rnzm3) is the band 
edge, density of  states effective mass. Donor- 
doping of  bismuth with tellurium produces changes 
in the elastic constants which are consistent with 
these predicted L to L point  contributions [2t. 

It is useful to know whether the L to L point  
carrier redistributions can influence the hydro- 
static pressure derivatives OCIj/~P of the elastic 

constants,  as such an effect might lead to measur- 
able differences between the 3CIa/OP values for 
pure bismuth and tellurium-doped bismuth, as it 
does for the second order elastic constants Cn ,  

C12, C66 and 6'14 (and in principle for C44 as well) 
[2]. The theoretical situation for the 3Ga/3P can 

be worked out by considering the L to L point  
effects on the third order elastic constants (CxjK) 
and combining the results with those given in 
Equation 5 for the second order constants. The 
influence of the L to L point transitions on the 
Cm< can be obtained [1 1] from the cubic term 
in the electronic free energy 

4-1 3 ~ i=x / 3  Fe 1 = ~ ( W ( O -  WO))2q~(O~U) ~. ~(0 
"= j = l  i = 1  

nt- 6 i = 1  j=l k=l l=1 

x ( W  ( ~  - W ( k ) ) ( w  ( o  - W(o)~ (J )~ (~ )4~(o  

x f X")(E)( Vo/0E 2) d Yqr (8) 

Here W (i) is the strain induced shift in the energy 
of  the ith valley and the effective density of  states 
at the Fermi surface is: 

(9) 

2341 



The L to L point contributions ACI, IK to the third 
order elastic constants of bismuth can be shown 
to be 

AC,11 = 

ACH4 = 

AC144 = 

AC~4 = 

AC,,3 = 

AC222 = AC, ss = ACn2 = AC, z4 

-~ (L , , - -  L22)33, ' 

81 2 t 
~L23(LIt -- L22) "/ 

8,  2 ' ---a-(L 11-  L22)L23')" 

A C , 2 3  = A C 1 3 3  = A C 1 3 4  

ACaaa = ACa44 = 0 (10) 

For a NENP band model 7' is a complex function 
of second derivatives of the Fermi-Dirac integral. 

Now the hydrostatic pressure derivatives 
OGj/OP of the second order elastic constants for a 
rhombohedral 3m Laue group crystal can be 
shown to be: 

antimony which has a multi-valley hole, Fermi 
surface some components of CIj and Cz, r K can 
include free carrier contributions. The hydrostatic 
pressure derivatives OGa/bP of the elastic constants 
of tellurium-doped bismuth measured here are the 
same within experimental error as those of pure 
bismuth (Table I). This is in agreement with the 
theoretical prediction. The strains induced by cer- 
tain ultrasonic modes break the symmetry of the 
crystal and thus of the Fermi surface - this leads 
to the strain induced band edge shifts and the extra 
free energy contribution which produces non-zero 
values of some individual AG,r and ACi,rr (Equa- 
tions 5 and 10). However, application of hydrosta- 
tic pressure has no further influence on symmetry 
and hence no effect on the derivatives OCzj/bP, 

These arguments also apply to the bismuth-  
antimony alloys-there should be little depen- 
dence of the derivatives aCIr on the doping 
level. 

 c,10  c,,c, + c33 +Cl,2,+ c1,+c12 1c,3 c,,+c,2  

I t 
_ = __ 1 2  ~C,2 - 1 + 2C,2C33- C,1C12 C 2 + (C33-  Cla)(Cxu + 2C,12 C222) + (C,1 + C12--2C,3)C,23_ 

aP 

aP 

~C,4 
0P 

0C33 

OP 

~C~ 

~P 

~C66 

C33(Cu + C12) - 2C~3 

~C19-- -[-l+CilC13+c12c13-2c213+(c3a-c13)(cl13+c123)+(Cll+C12-2c13)c13alca3(cll + cx2) - -  2C123 

[Cv, C?a--ClaCv* + (Ca3-C,3)(Clx4 + Cx2,)+ (Cu + C12-  2C,a)C134 / 
[ C33(C,1 + C,2) - 2C~3 ] 

= - I 1 +  + - 

- + C33(C~, + C,2) - 2C~3 

= -- + 2C33(C,1 + C,2) --4C~3 ~P 

�9 ? / 

Substitution of the Equations 5 and 10 for the 
electronic contributions ACIj and ACIj• into 
these Equations 11 in the form for A(~Cza/OP) 
shows that all the terms cancel so that each 
A(OCtj/OP) is zero. There are no electronic con- 
tributions to the hydrostatic pressure derivatives 
of the elastic constantS, although certainelastic 
constants themselves do dePend upon electron 
concentration. Hole contributi0ns and electron- 
hole interactions can also be shown: to be absent 
(both are insignificant in bismuth [2]). For 

(11) 

The measurements of the pressure derivatives 
of the elastic constants enable a quantitative 
determination of the vibrational anharmonicity 
associated with the long wavelength acoustic 
modes for the bismuth alloys. The usual practice 
o f  discussing anharmonic effects in terms of 
Griineisen parameters will be followed. The 
generalized Grtineisen mode gammas specify the 
isothermal strain dependence of the frequency 
cop(q) of  a lattice mode of wave vector q and 
branch p (=  1,2, 3). 

2 3 4 2  



:'k'l'~(q) = -  ~ L  

Here r/jk are components of the Lagrangian strain 
tensor. The general relationship expressing the 
acoustic mode Griineisen parameter H P ~ ( N ) i n  
terms of second order and third order elastic 
constants [12] is 

HF~(N) = --[2flmcop(N)]-l{1 + S~k  

X [2COp(N)Uj U/~ + CikmunvNmNnUuUv] } 

(13a) 

For rhombohedral crystals belonging to the 
3m Laue group, by using the pressure derivatives 
of the thermodynamic coefficients Bzj, a special. 
ized form has been developed as follows: 

H r , ( N )  = - -  (2CO~T) -1 

x{1 + 2co[SffU?+ U~) + SaU 21 

- -  B l i ( N 1  U1 q- N 2 W2) 2 

- B66(NiN2 -- N2 U1) 2 
2 2 

- -  B33N3 U3 - -  B44[(N2 U3 

+ Na/_72) 2 + (N3 U1 + N1 0"3) = ] 

-- 2Bla(N~Na U1 Ua + N=Na U2 U3) 

-- 2B14(N~ U= Ua + 2N~Na U1 Ua 

+ 2NIN3 U1 Ua --N~ U2 U3 

+ U] - N=N  
where 

co = G I ( &  Ua +N=G) ~ + C6dN1U= 

- -  N2 U1) 2 + z 2 Ca3Na Ua + C44[(N~ Ua 

+ Na U~) ~ + (N~ G + N~ Ua) ~] 

+ 2GffNIN~ U, Ua + N=N~ U~ U~) 

+ 2Cv~(N~U2U~ + 2NaN~UiU3 

+ 2N~N3 Ui U2 --N~ U~ U~ 

+ N2 N3 2 2 Ui --N=N3 U2) (13b) 

The acoustic mode Grttneisen gammas have been 
computed as a function of orientation using as 
input data the second order elastic constant and 
pressure derivative data given in Table L Results 
are plotted for the bismuth-antimony alloy in 
Fig. 3 and for the heavily tellurium-doped bismuth 
in Fig. 4. These parameters are similar to those of 
bismuth itself [13]. In the absence of a lattice 
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Figure 3 The zone centre, acoustic mode Griineisen par- 
ameters of bismuth-10 at % antimony alloy as a function 
of mode propagation direction. 

instability in the form of mode softening, it is 
usual that the elastic constants and the lattice 
vibrational frequencies increase under pressure; 
the Griineisen parameters should then be positive. 
Since this is so for all acoustic modes propagated 
in any direction, there is no evidence for mode 
softening in the alloys which show normal 
behaviour of the zone centre acoustic mode 
frequencies under pressure. The group V semi- 
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ameters of bismuth doped with tellurium (T20) as a 
function of mode propagation direction. 
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metals show a tendency towards behaving as 
layer-like materials with tighter interatomic 
binding within a double-layered plane than in 
the direction (z) normal to the layers [14]. 

The ease of  cleavage to expose x y  planes 
illustrates this property. The application of hydro- 
static pressure to a uniaxial crystal can produce 
a quite different contraction along the major 
symmetry axis than in the plane normal to it. For 
layer-like crystals such as the group V semi-metals, 
the linear compressibility /3~ (= Si jkkmim j in the 
direction of  a unit vector m) is much larger in the 
direction perpendicular to the layer planes than in 
tile plane normal [14]. In a rhombohedral crystal 
the linear compressibility has two components: 

/3z = 2S13 +$33 (14) 

and the other normal to this trigonal direction: 

~Xy ~-- S l l  -1- S12 "q- S13 (15) 

For pure bismuth /3 z is 18.1 x 10-12m2N -1 while 
/3xy is 6.4 x 10-12mZN -1, for the tellurium-doped 
crystal these compressibilities are 18.3 and 6.4 
respectively and for the b ismuth-ant imony alloy 
18.7 and 5.9 (in the same units), respectively. 
Thus the alloys show the same anisotropy of  
compressibility as the pure element, which points 
to closely similar interatomic binding forces in 
the double layer model. The anisotropy of  the 
mode Grtineisen parameters (Fig. 3) concurs with 
this double layer model for the b ismuth-ant imony 
alloy. Since the major effect of  hydrostatic 

pressure is to squeeze the layers together 
(flz >flxy) ,  the effect of  the repulsive forces 
between the double layers must be particularly 
important for modes propagated down the z-axis. 
Hence the Grtineisen parameter for z-axis modes 
tends to be large (Fig. 3). 

The temperature dependences of  the ultrasonic 
wave velocities in b ismuth-ant imony crystals are 
almost unaltered by alloying [1]. Now an elastic 
constant CIj(T ) at a temperature Tcan be written 
[1 ,15]  as 

c u ( r  ) = Cza(0)[1--KIgF(T/Oo)]  (16) 

where Czj(0) is that at T = 0 K. Kxa is a constant 
which depends upon the anharmoncity of  the lat- 
tice vibrations and can be expressed empirically as 

KIj = 9~=ODL(Cx/C) (17) 

where C1/C is an anharmonic to harmonic force 
constant ratio and ~= is the thermal expansion at 
infinite temperature. Thus the physical source of  
the temperature dependences of an elastic con- 
stant, expressed approximately by Equation 16, 
lies in the anharmonicity o f  the lattice vibrations. 
Therefore, the lack of  compositional dependence 
of  the temperature dependence of  the elastic con- 
stants suggests that the anharmonicity of  bismuth 
is not sensitive to alloying with up to 10at% 
antimony [1]. The close similarity between the 
hydrostatic pressure of  the elastic constants of  
bismuth and those of  the b ismuth-ant imony alloy 
(Table I) confirm this suggestion. 
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